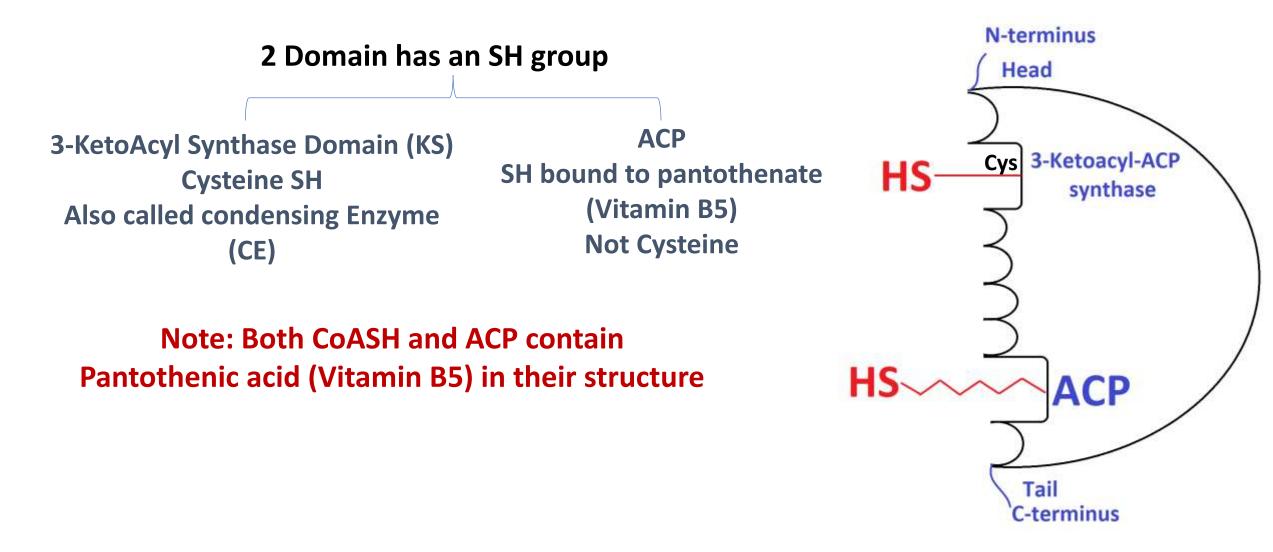
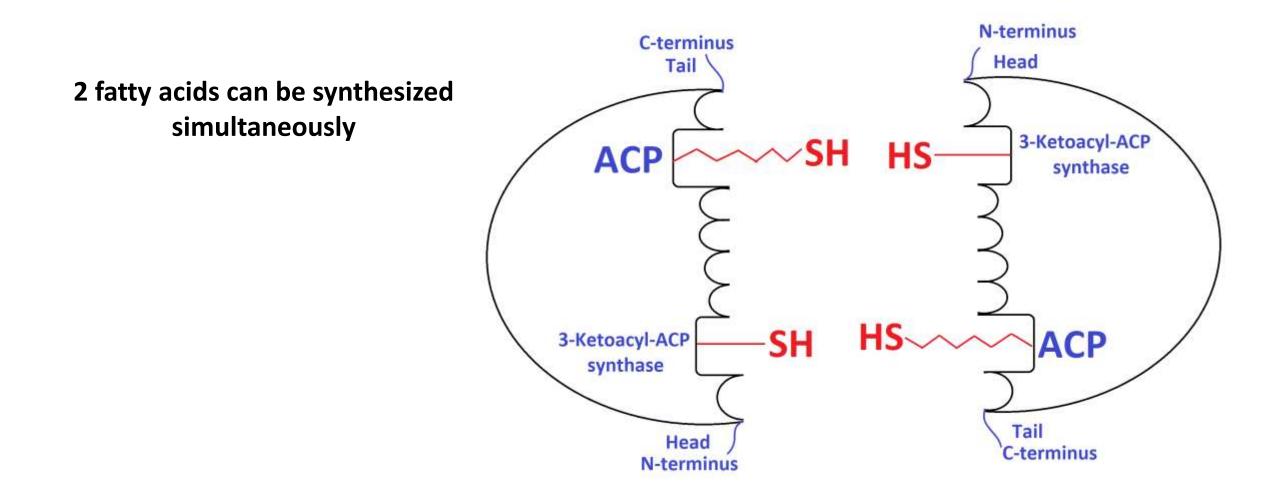
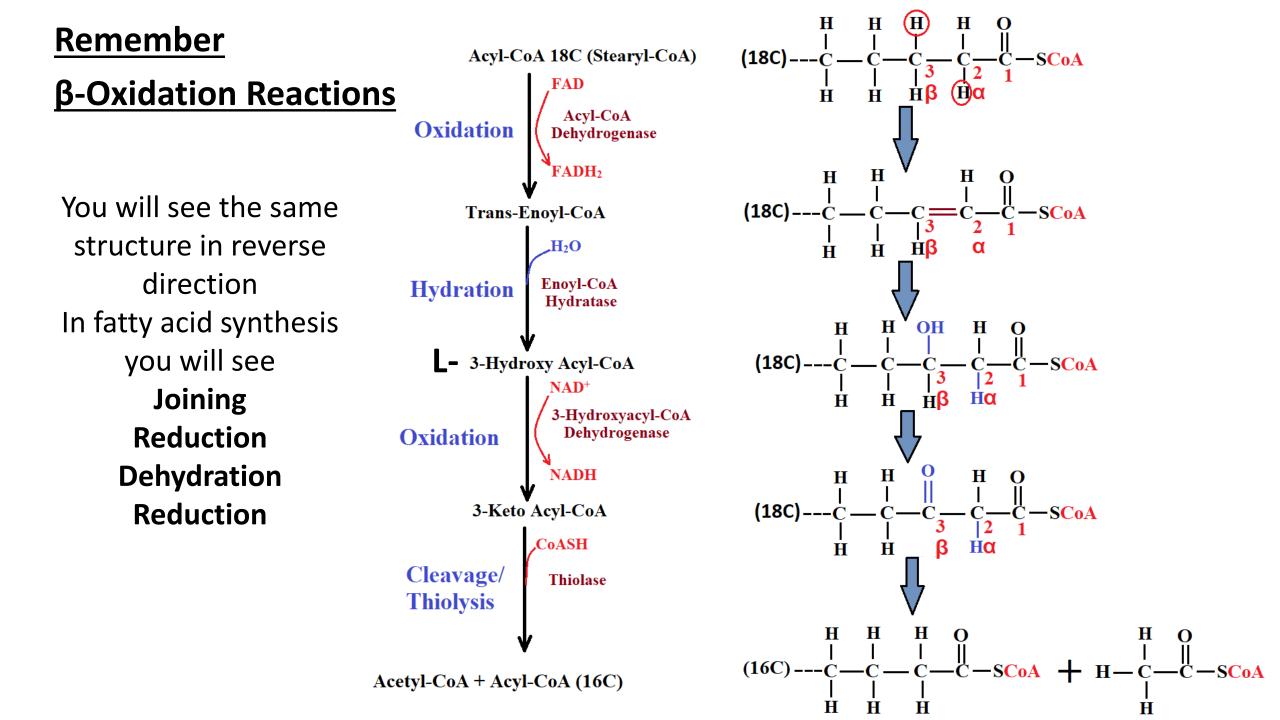

Fatty acid synthesis

- Mainly in Liver Cells, lactating Mammary gland, small amount in Adipose cell and Kidneys
- Occurs in the Cytosol, NOT mitochondrial Matrix
- Precursor: Acetyl-CoA (Carbon source)

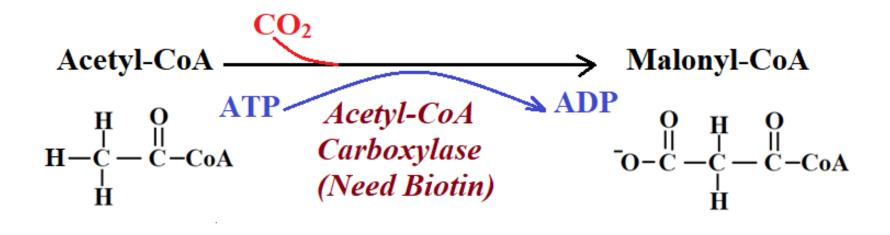

```
To synthesize Fatty acid we need
```

During the Synthesis of fatty acid we successively add 2C to the Primer (these 2 Carbons from Malonyl-CoA)

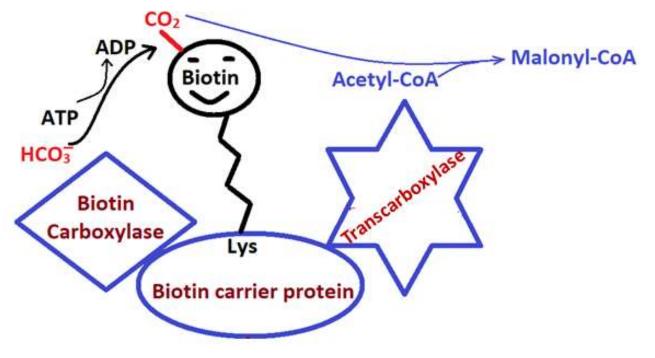


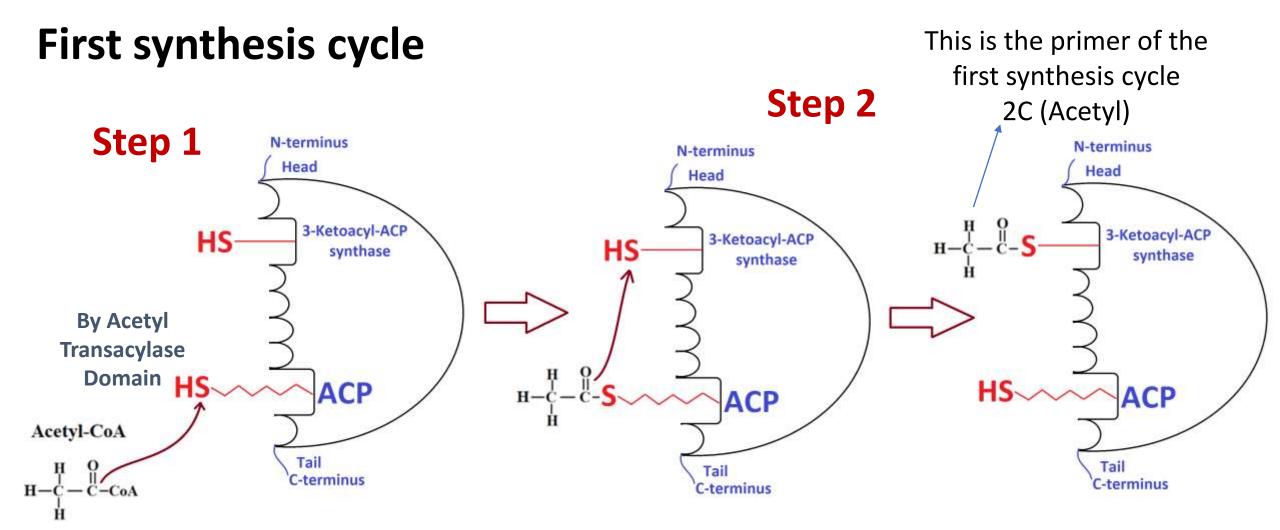

In Eukaryotes the Enzyme that catalyze fatty acid synthesis *Fatty acid Synthase* (found in the cytosol)

- single polypeptide chain, synthesized from a single gene
- Contain 8 domains: 7 catalytic domains (7 activities) + ACP "Acyl-Carrier protein" domain



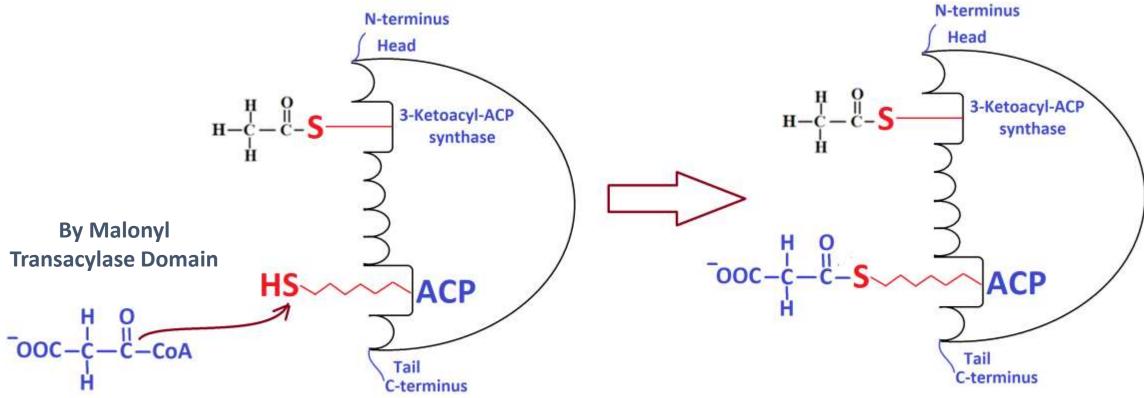
Fatty acid synthase is **active only** in its **Dimeric form** (2 subunit not attached covalently to each other) The 2 subunits attached **Head-to-Tail**

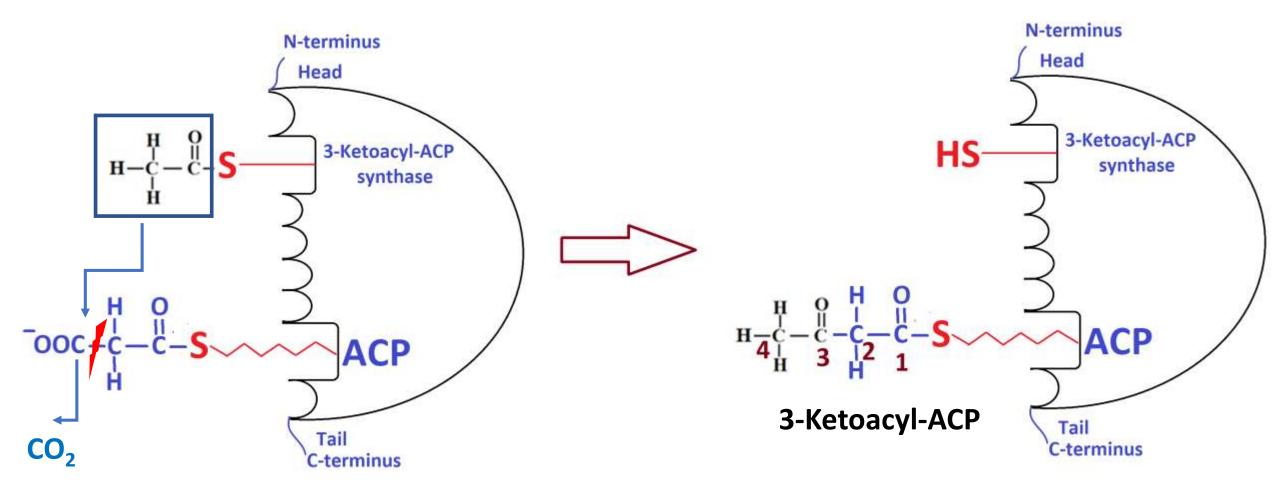

"The rate limiting and Control step of FA synthesis"



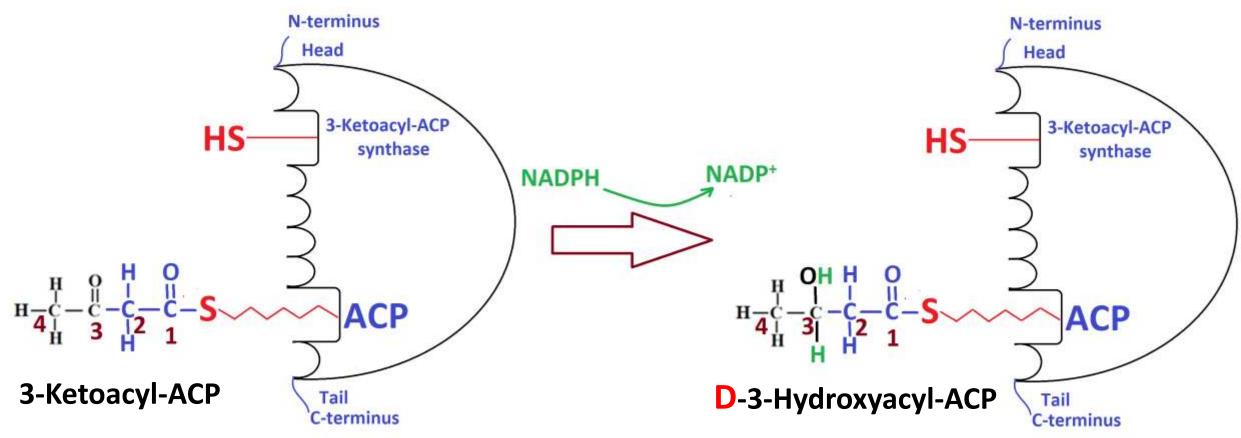
Acetyl-CoA Carboxylase in a multifunctional enzyme composed of 3 Domains with 3 activities:

- **1. Biotin Carrier protein:** bind covalently to biotin by amide bond with Lysine
- 2. Biotin Carboxylase: attach CO_2 to Biotin, this require ATP, HCO_3^- is the source of CO_2
- **3. Transcarboxylase:** Transfer CO₂ from Biotin to Acetyl-CoA forming Malonyl-CoA

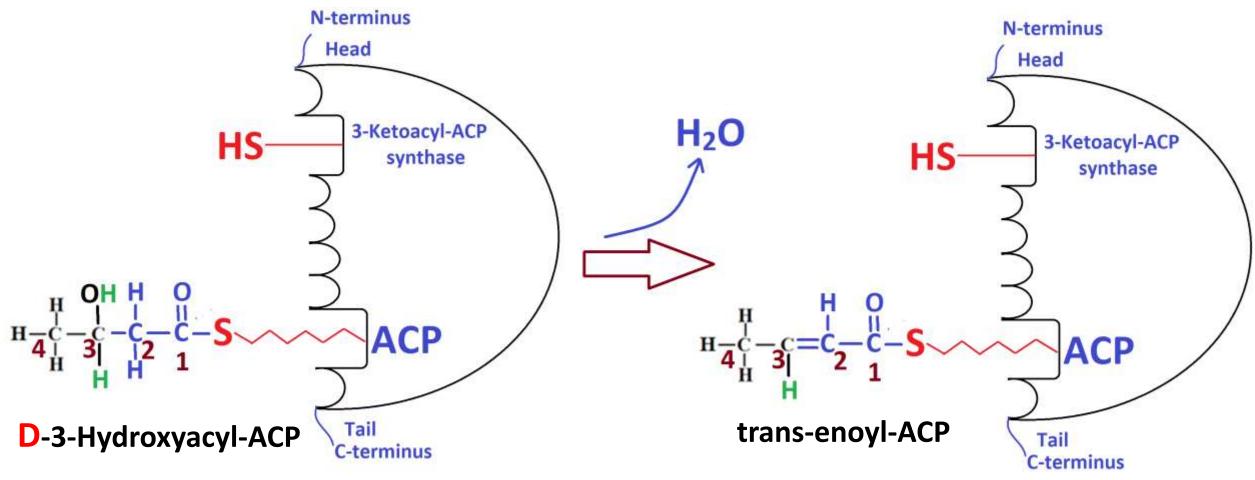

Regulatory sites: Allosteric + Covalent


Step 1: Acetyl group (2C) is transferred fro acetyl-CoA to ACP by *Acetyl Transacylase (AT) Domain* فارغ Step 2: the Acetyl group is transferred from ACP to 3-KetoAcyl Synthase Domain leaving ACP vacant

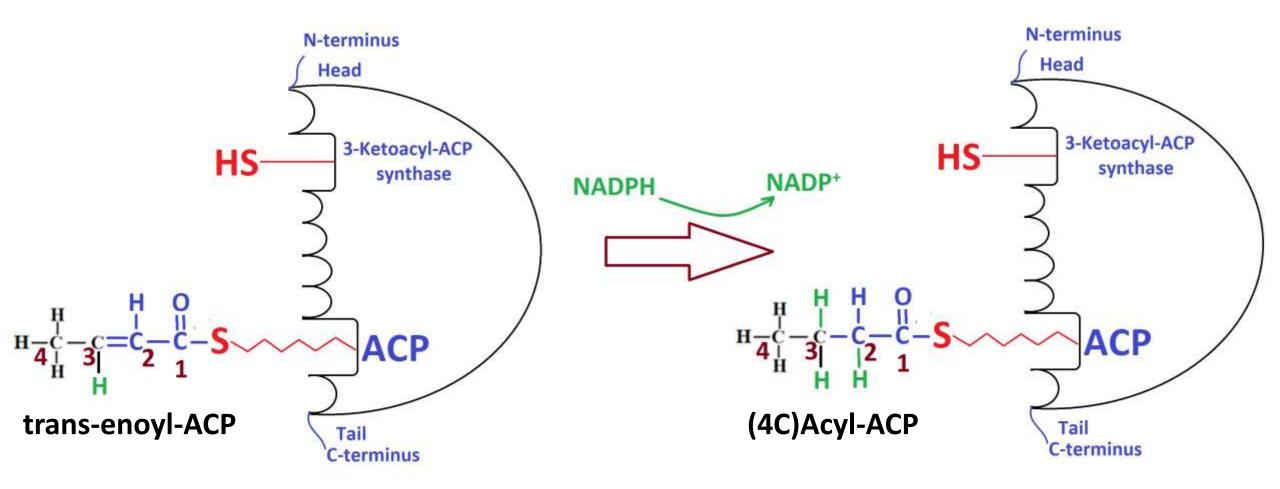
Step 3


Step 3: Malonyl group (3C) is transferred from Malonyl-CoA to ACP by *Malonyl Transacylase* (*MT*) *Domain*

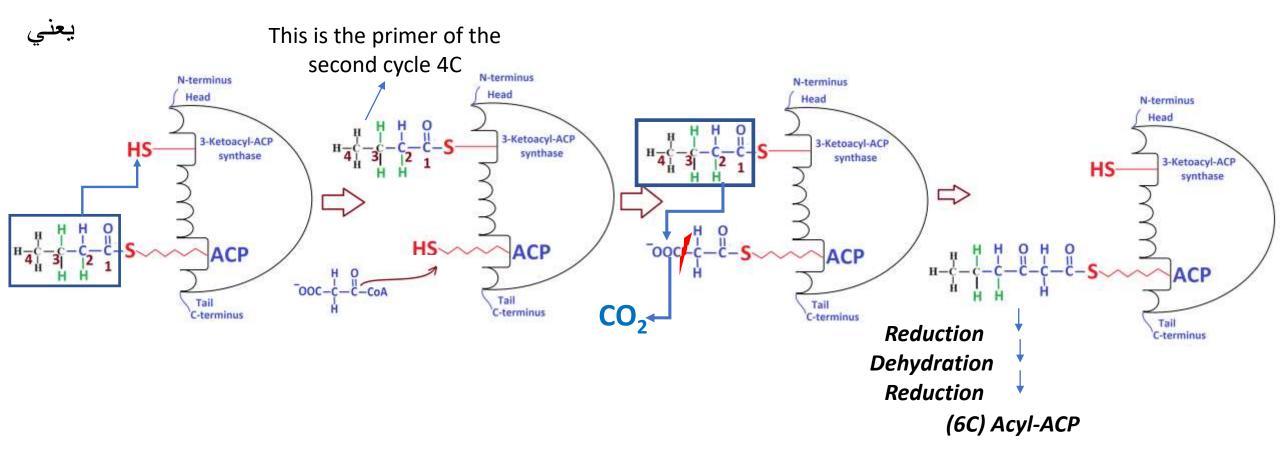
Step 4 "Joining or Condensation"


Step 4: CO₂ is removed from Malonyl and the acetyl-group bound to **3-KetoAcyl Synthase** is transferred to the 2C remained from malonyl in the ACP forming 4C 3-Ketoacyl bound to ACP (3-Ketoacyl-ACP) this step by **3-Ketoacyl-ACP synthase (KS) Domain (Condensation Step)**

Step 5 "Reduction"


Step5: reduction of the Ketone group forming **D**-3-Hydroxyacyl-ACP by **3** -*Ketoacyl-ACP reductase (KR) Domain* using NADPH as reducing agent

Step 6 "Dehydration"


Step 6: dehydration forming trans-enoyl-ACP by 3-Hydroxyacyl-ACP dehydrates (DH) domain

Step 7 "Reduction"

Step 7: reduction of the double bond forming 4C Acyl-ACP by *enoly-ACP reductase (ER) Domain* using NADPH as reducing agent مبروك صار عندك حمض دهني طوله 4 كربونات

Now we do a second cycle of synthesis repeating steps 2 - 7

The 4C acyl is transferred from ACP to 3-KetoAcyl Synthase Domain leaving the ACP vacant Malonyl bound to ACP, remove CO₂ from malonyl and transfer the 4C acyl from **β-KetoAcyl Synthase Domain** to the 2C remained from Malonyl forming 3Ketoacyl-ACP then Reduction \rightarrow Dehydration \rightarrow Reduction صار طوله 6 كربونات # of Synthesis Cycles = $\frac{\# of Carbons}{2} - 1$ Each Cycle need 2 NADPH Each Cycle Produce 1 H₂O Each Cycle use Malonyl-CoA Each Molonyl-CoA need 1 ATP Total Acetyl-CoA used = $\frac{\# of Carbons}{2}$ One as Primer, the rest as Malonyl

In the cytosol we can do maximum 7cycles producing Saturated 16C acyl (Palmitoyl) bound to ACP

After that the last Domain *Thioesterase (TE) Domain* hydrolyze the thioester bond between Pamitoyl and ACP releasing Palmitic acid (16:0)

- The ultimate source of All Palmitate C is Acetyl-CoA but:
- 2C is directly passed from Acetyl-CoA in the first step
- 14 passed through malonyl-CoA during the 7 synthesis cycles

Q: For synthesis of Pamitate (16:0) from cytosolic Acetyl-CoA?

-How many Cycles of synthesis (Condensation)? 7 cycles

-How many Malonyl-CoA? 7 Malonyl-CoA

-How many Acetyl-CoA (as Acetyl-CoA)? 1 Acetyl-CoA

-How many total Acetyl-CoA? 8 Acetyl-CoA

-How many NADPH? 14 NADPH

```
-How many H_2O? 7 H_2O – 1H_2O to release it from ACP = 6H_2O
```

-How many ATP required? 7 ATP

The overall reaction for palmitate synthesis:

8 Acetyl CoA + 7HCO₃⁻+ 7ATP +14NADPH+14H⁺ $\rightarrow \rightarrow$ Palmitic acid+ 8CoA+ 7CO₂ +14NADP⁺+7ADP+7Pi+6H₂O 7 acetyl-CoA 7 Malonyl-CoA

نزیادة الطون For more Elongation of the fatty acid?

The process occurs in the **smooth ER or Mitochonderia**, by enzymes called **Elongases** they successively add 2C at the carboxyl (head) side till we reach the desired length 18, 20, 22....

To make the fatty acid unsaturated \rightarrow occurs in the Smooth ER

In the **smooth ER** we have Enzymes called *Fatty acyl CoA Desaturases* that add *cis* double bonds to long chain fatty acids

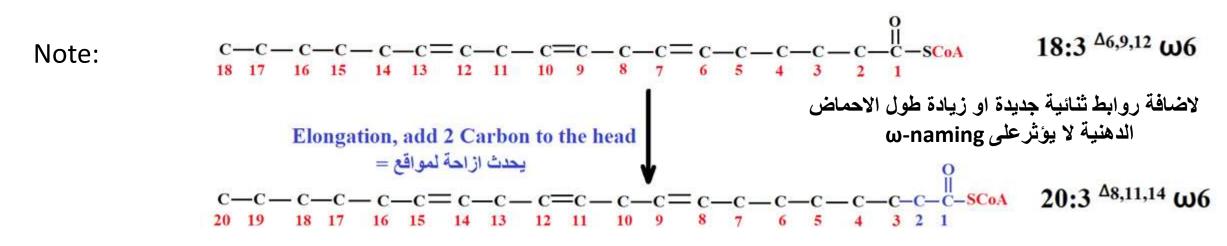
We have

```
Desaturase 9 \rightarrow add double bond at C9 (C9 = C10)
```

```
Desaturase 6 \rightarrow add double bond at C6 (C6 = C7)
```

```
Desaturase 5 \rightarrow add double bond at C5 (C5 = C6)
```

```
Desaturase 4 \rightarrow add double bond at C4 (C4 = C5)
```


Notes:

- The first double bond added is usually at C9 by desaturase 9
- all desaturases require O₂, NADH, Cytb5 and it's FAD-linked reductase
- We (Human) can NOT add double bonds beyond (past) C9, that's why we cannot synthesize fatty acids containing double bonds beyond C9 and must obtained from diet we call them *Essential fatty acids* Linoleic Acid (18:2^{Δ9,12}) and Linolenic acid (18:3^{Δ9,12,15})
- We can synthesize Arachidonic acid $20:4^{\Delta 5,8,11,14}$ from Linoleic acid so we call it *Semi-essential*
- If low intake of linoleic acid \rightarrow Arachidonic acid become essential

Examples

Stearic acid (18:0) by desaturase 9 become Oleic acid (18:1 $^{\Delta 9}$)

Palmitic acid (16:0) by desaturase 9 become Palmitoleic acid (16:1 $^{\Delta 9}$)

احفظ هاي خطوات تصنيع الناتج اللي رح يطلع معك ا

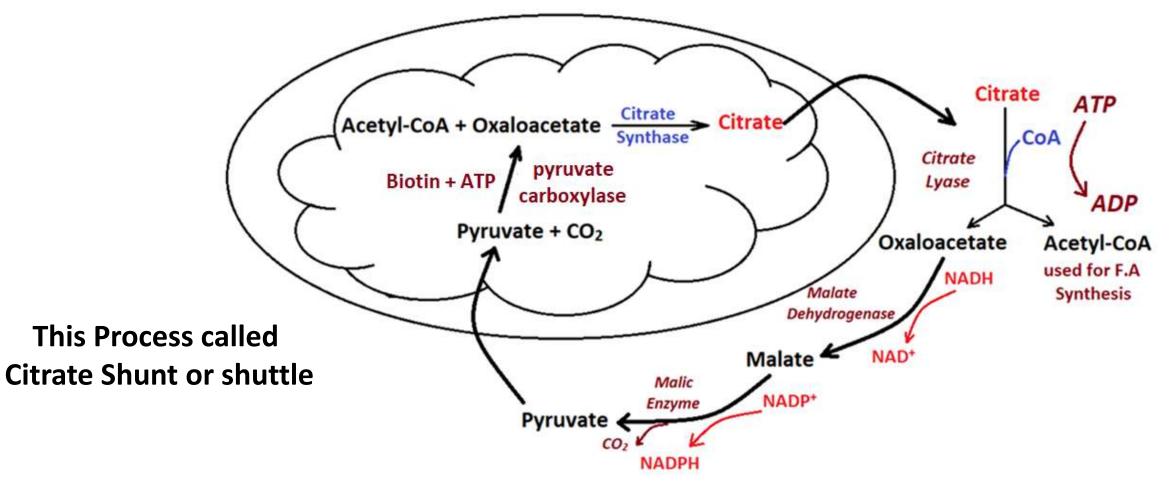
Q: write the product of the following Fatty acid Modifications?

1. Elongation of $18:2^{\Delta9,12}$

2. The following series of modification on $18:2^{\Delta9,12}$

Desaturase 6

Then elongation


Then desaturase 5

Important note

As we said; Fatty acids synthesis occurs in the Cytosol from Acetyl-CoA

But Acetyl-CoA used to synthesize fatty acids formed in the Mitochondrial Matrix from Pyruvate (carbohydrate) So we should transfer Acetyl-CoA from Mitochondria to the Cytosol, **HOW**?

Acetyl-CoA can **NOT** cross the inner mitochondrial membrane (No Carrier)

In Words:

- 1. Mitochondrial Acetyl-CoA produced mainly from pyruvate of Glycolysis is bounded to oxaloacetate forming Citrate by citrate synthase (1st step of TCA)
- 2. Citrate get out of Mitochondria to the Cytosol (So acetyl is transported as part of Citrate)
- 3. In the Cytosol Citrate is cleaved by *Citrate Lyase* which consume ATP producing:
- Acetyl-CoA used for FA synthesis
- Oxaloacetate (OAA), this OAA is reduced to malate in the cytosol by *Cytosolic Malate dehydrogenase* (NADH is oxidized to NAD⁺), then Malate is Oxidatively decarboxylated to Pyruvate by *Malic Enzyme* "NADP⁺ is reduced to NADPH"

4. Pyruvate is return back to Mitochondria where it can be converted to Oxaloacetate by **Pyruvate Carboxylase**

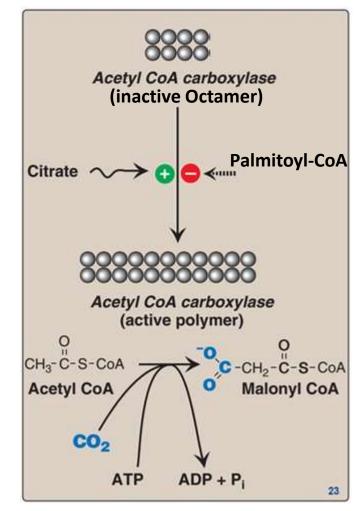
Note: for each acetyl-CoA transported to cytosol:

- Consume ATP
- NADH to NAD⁺
- Produce NADPH

NADPH required for FA synthesis come from **PPP and from Cytosolic Malic Enzyme**

Excess Carbohydrate \rightarrow Synthesis of Fatty acids

So, in this case you want Citrate to get out of Mitochondria NOT to TCA cycle, How this happens?


Excess Carbohydrate \rightarrow Increase ATP (high energy charge) \rightarrow inhibit TCA cycle \rightarrow Increase Isocitrate and Citrate \rightarrow So Citrate accumulate and get out of Mitochondria

* High Cytosolic Citrate indicate high energy signal حضرتك ماكل كثير كربو هيدرات تصفر So high Citrate and ATP enhance FA synthesis

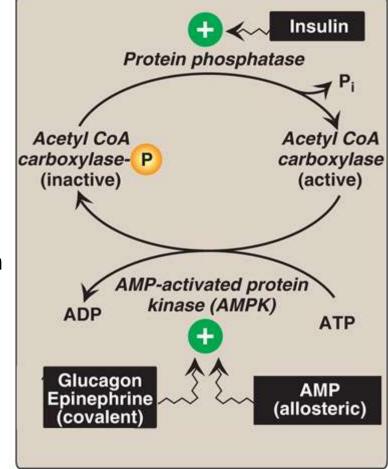
Regulation of F.A Synthesis

Control activity of Acetyl-CoA Carboxylase (Malonyl-CoA مناعة Malonyl-CoA) a. Allosteric Control This enzyme has 2 forms Octamer: inactive Filamentous polymer: Active

↑ Citrate → Induce polymerization of the enzyme → Activation
↑ Palmitoyl-CoA "End-product" → inhibit polymerization → Inhibition

b. Covalent control (phosphorylation)

Acetyl-CoA Carboxylase has 2 forms


- Phosphorylated \rightarrow Inactive
- Dephosphorylated \rightarrow Active

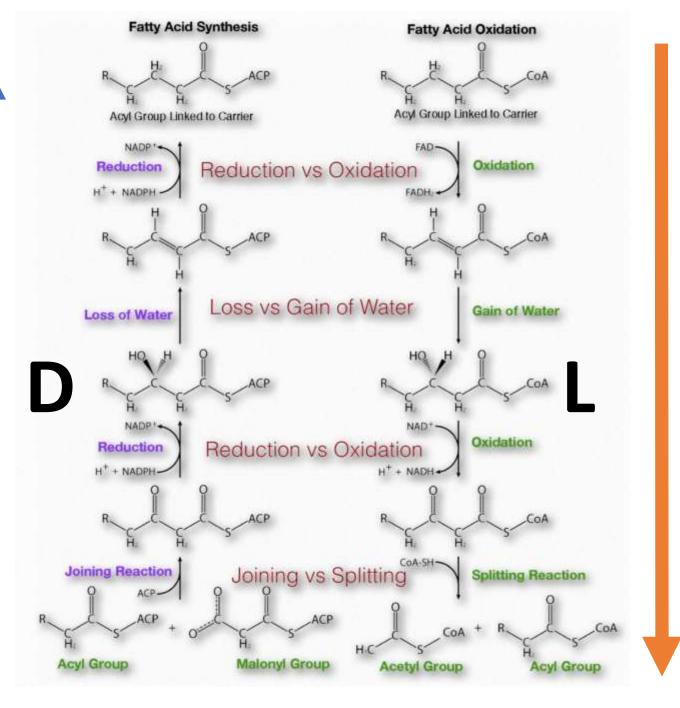
AMP-activated protein kinase (AMPK) phosphorylate Acetyl-CoA carboxylase \rightarrow Inhibition

Protein phosphatase dephosphorylate Acetyl-CoA carboxylase \rightarrow Activation

AMPK is activated by:

- Allosterically by AMP "high AMP indicate low energy so we cannot synthesize fatty acids"
- Covalently by phosphorylation through Glucagon and Epinephrine انزیم اخر بنشط عندما تضیف علیه فوسفات

High Glucose \rightarrow Insulin \rightarrow activate protein phosphatase \rightarrow dephophorylate and activate Acetyl-CoA Carboxylase \rightarrow Activate FA synthesis


Low Glucose \rightarrow Glucagon and Epinephrine \rightarrow phosphorylate and activate AMPK \rightarrow phosphorylate and Inhibit Acetyl-CoA Carboxylase \rightarrow Inhibit FA synthesis

Summary:

- ➢ Citrate, Insulin, high carbohydrate diet "Glucose" → Activate acetyl-CoA Carboxylase → Activate FA synthesis
- ➢ Palmitoyl-CoA, AMP, low carbohydrate, Glucagon and Epinephrine → Inhibit acetyl-CoA Carboxylase →Inhibit FA synthesis

Regulation of Fatty acid catabolism (β-Oxidation)

↑ Malonyl-CoA→ Inhibition of FA catabolism by inhibiting *CAT-I "Carnitine Shuttle"* → Inhibit catabolism of Long chain FA When we synthesize malonyl-CoA this mean that the cell need to synthesize Fatty acid, so fatty acid degradation should be stopped **Synthesis**

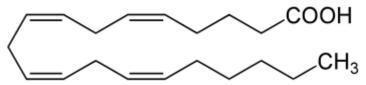
Oxidation

VARIABLE	SYNTHESIS	DEGRADATION
متی اکثر اشی Greatest flux through pathway	After carbohydrate-rich meal	In starvation
Hormonal state favoring pathway	High insulin/glucagon ratio	Low insulin/glucagon ratio
Major tissue site	Primarily liver	Muscle, liver
موقعها بالخلية Subcellular location	Cytosol	Primarily mitochondria
Oxidation/reduction coenzymes	NADPH (reduction)	NAD ⁺ , FAD (oxidation)
Product of pathway	Palmitate	Acetyl CoA
Repetitive four-step process	Condensation, reduction dehydration, reduction	Dehydrogenation, hydration dehydrogenation, thiolysis

Questions:

How many ATP required for the synthesis of Palmitate (16:0) from 8 Cytosolic Acetyl-CoA?
 7 ATP for synthesis of 7 malonyl-CoA

2. How many ATP required for the synthesis of Palmitate (16:0) from 8 Mitochondrial Acetyl-CoA? **15 ATP**


(8 ATP to Transport 8 Acetyl-CoA from mitochondria to Cytosol + 7 ATP to convert 7 Acetyl-CoA to 7 malonyl-CoA

Eicosanoids: fatty acid derivatives

- variable group of compounds produced by almost all body tissues with a very wide range of functions
- Contain 20C atoms "Eicosa = 20"
- The **precursor** of all Eicosanoids is mainly **Arachidonic Acid 20:4**^{Δ 5,8,11,14} (an ω 6 fatty acid, semi- essential and synthesized from linoleic acid 18:2^{Δ 9,12})
- Eicosanoids can be classified into 4 main families:
- a. Prostaglandins (PG)
- b. Thromboxans (Tx)
- c. Leukotrienes (LT)
- d. Prostacyclines (PC)

Functions of eicosanoids in general:

- Control smooth muscle contraction in the blood, bronchial tree, Uterus....
- Many LT and PG Induce inflammation "swelling, redness, fever, pain....."
- Thromboxanes control platelets aggregation

Dietary Linoleic acid — — — Arachidonic acid

When the cell need to synthesize Eicosanoid we first release arachidonic acid from the phospholipids

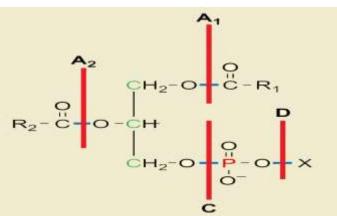
1 CH₂-0

added to C2 of Glycerol in glycerophospholipid

Glycerophospholipids

" source of Arachidonic acid for Eicosanoid synthesis"

Hydrolysis of Glycerophospholipids is catalyzed by enzymes called Phospholipases; 4 types according to site of action


Phospholipase A1

Common Location of

Arachidonic acid

Phospholipase A2

- Phospholipase C
- Phospholipase D

Phospholipase A2 is required to release Arachidonic acid for Eicosanoid synthesis

Synthesis of Eicosanoids Arachidonic Acid Cyclooxygenases (COX) Lipooxygenase COX1 and COX2 Leukotrienes (LT) **Prostaglandin H2** PGH2 is the parent compound of prostaglandins, (PGH2) thromboxanes and prostacyclins **Thromboxanes** Other **Prostacyclins Prostaglandins**

There are 2 types of COX enzymes:

- i. **COX1:** <u>constitutive enzyme</u> "has constant concentration throughout the life of the cell" found primarily in the stomach, kidney, and platelets and synthesize the PG and Thx that are required for the normal functions of these tissues
- **ii. COX2:** found in monocytes, macrophage, and smooth muscles, its an <u>inducible enzyme</u> synthesized in these tissue during inflammation it synthesizes PGs that induce inflammatory symptoms

If we inhibit COX1:

- Affect gastric lining \rightarrow Gastric Ulcer
- Prevent Tx synthesis in platelets \rightarrow prevent clotting

If we inhibit COX2:

- Anti-inflammatory effect

-Non-steroidal anti-inflammatory drugs (NSAIDs): such as Aspirin, Ibuprofen..... These drugs inhibit COX enzyme so prevent PGs and Txs but not Leukotrienes

Aspirin "Acetyl-Salicylic acid": is nonselective COX inhibitor it irreversible inhibit both COX1 and COX2 by adding an acetyl group covalently to Serine residue in the active site of COX (suicide inhibitor) <u>Effect of Aspirin</u>

salicviate (aspirin)

Inactive

cyclooxygenasi

COO

Salicylate

-Ser-OH

- Prevent clotting due to inhibition of COX1 \rightarrow baby aspirin 100mg after age of 50
- Analgesic and Antipyretic due to inhibition of COX2
- Side effect: Gastric Ulcer due to inhibition of COX1

Note: Steroidal anti-inflammatory drugs such as cortisol inhibit phospholipase A2 \rightarrow no free Arachidonic acid \rightarrow inhibit the synthesis of all Eicosanoids

Obesity and regulation of appetite (Hunger feeling)

- **Obesity** is increased fat and lipid storage in the body, many factors contribute to obesity such as the dietary habits, genetics...
- Obesity increase the risk of cardiovascular system, Diabetes, breast and colon cancer
- > There are many hormones that regulate appetite:
- *a. Adipokines:* peptide hormones released from adipocytes; include:
- Leptin: Hunger suppressor
- Adiponectin: regulate glucose level and fatty acid oxidation
- Resistin: induce inflammation, insulin resistance

b. **Ghrelin**: secreted by digestive tract (stomach) when its empty and its **Hunger stimulator**, which stimulate the hypothalamus to make you feel hungry

Leptin deficiency or Leptin receptor deficiency will increase the feeling of hunger and cause obesity

